The Role of "Innovation" in Minimizing the Environmental Effects of Offshore Oil & Gas Activities.

OCS POLICY COMMITTEE MEETING

San Diego, California October 31 - November 1, 2001

Aston A. Hinds, Ph.D.

- Continued Improvements in Drilling Technology
- Innovation in Treatment and Disposal Technologies for Waste Streams
- Development of High Performance WBM Substitutes for OBM and SBM
- Deployment of Effective Management Systems to Ensure Regulatory Compliance and Protect Worker Health and Safety

Offshore Environmental Considerations

- Potential areas of concern
 - * Fishing industry
 - * Sea mammals
 - * Birds
 - * Coral reefs
 - * Human health through consumption of seafood

Environmental Considerations OBM, SBM and WBM Discharge

Primary Functions of Drilling Fluids

- Remove cuttings from wellbore
- Stabilize wellbore
- Control subsurface pressures

Environmental Considerations WBM

Potential toxicants

- * Heavy metals barite
- * Organic compounds lubricants
- * Surfactants mud thinners / shale inhibitors

Potential impacts

- * Typically considered low
- * Water column toxicity
- * Benthic impacts on sensitive areas

Environmental Considerations OBM & SBM

Environmental Considerations OBM & SBM

Potential toxicants

- * Organic loading
- * Smothering
- * Toxic Organics
- * Heavy metals from barite

Potential impacts

- * Toxic impact on benthic community
- * Duration of impact on benthic community

Water-Based Mud Operational Challenges

• Difficulty with reactive clay formations

- Stuck pipe problems
- Lubricity problems

Oil-Based Mud Operational Challenges

- Discharge of OBM and cuttings severely restricted
- Logistical problems of handling cuttings disposal limit rate of penetration
- Spill liability

Synthetic-Based Mud Operational Challenges

 Higher cost per barrel compared to waterbased mud and oil-based mud

• Loss of whole mud to the formation can be a very expensive problem

• Regulatory considerations

Improved Functions of Synthetic-Based Muds

- Shale stability
- Lubricity
- Rate of Penetration
- Borehole stability
- Corrosion protection

Non-Water Quality Advantages Compared to Oil-Based Muds

- Source reduction of priority pollutants and toxic organics
- Reduction in air pollution from not hauling cuttings
- Reduction in potential accidents from not transporting cuttings
- Reduction in spill potential for diesel and mineral oil
- Reduction in exposure to toxic organic fumes for workers
- Elimination of cross media contamination

Innovative Drilling Fluid Systems

- LV Esters
- Silicate Systems
- Reversible Systems
- Total Fluids Management

- Conventional esters show
 - * Operational excellence
 - * Best in class environmental performance-Toxicity/biodegradation
- Until now mostly used in relatively shallow water-high viscosity for deep water use
- New low viscosity esters show excellent operational characteristics and excellent environmental performance

- Silicates used in oilfield for decades
- Return to these fluids as environmental restrictions increase
- Re-evaluation of the membrane forming ability of silicates
- Improvements in WBM performance through silicate design and fluid engineering

Health, Safety and Environmental Aspects

- Class E rating for North Sea (unlimited discharge)
- PSAC List (Microtox testing passed)
- Mysidopsis shrimp test passed in Gulf of Mexico

- Silicates increase rate of diatom growth
- Silicates increase green algae growth
- Faster growth of mussels, scallops, oysters...
- 4 year EU project on "marine cultivation" with silicate

- Silicate based drilling fluids are growing popularity
- Silicates have a unique chemistry
- Silicates are versatile
- Silicates can be beneficial to an ocean environment

- A <u>new</u> look at operations offshore
- Waste Minimization
 - * Achieving improved environmental performance and cost reductions
- Applying Best Management Practices
 - * Rig audits, Best Available Technology

- Process Management
 - * Benchmarking
 - * Measurement
 - * Peer Review
 - * Continuous Improvement

Slim Hole Drilling

- Advantages
 - * Reduced Drilling Fluid Volumes
 - * Less Environmental Impact
- Disadvantages
 - * Unfavorable Fluid Hydraulics
 - * Narrow Tolerances

Total Reservoir Exposure: 4000 Meters

Dual Completion

Draining Multiple Reservoirs Economic --- Drivers --- Environmental

- Enhance production capabilities
- Reduce development well numbers
- Reduce slot requirements
- Improve EOR sweep effectiveness

- Multiple Drainholes
- Mechanical and Hydraulic Integrity
- Reentry Capability
- Selective Flow Control

Coiled Tubing Drilling

Bottom Hole Assembly (BTA)

Environmental Effects of Offshore Oil and Gas

- 1. Innovations in Drilling and Completions
 Technology Combined with New Technological
 Developments in Drilling Fluids have
 Significantly Reduced the Environmental Impact
 of Offshore E&P
- 2. Treatment Technologies for Offshore Drilling Waste Streams While Available are Impacted by Space and Cost Limitations

Environmental Effects of Offshore Oil and Gas

- 3. The Advent of High Performance Cost Competitive WBM Substitutes for OBM/SBM Will Further Reduce Environmental Impact
- 4. "Engaging" Regulatory Agencies and NGO's May be Critical to the Long Term Viability of the E&P Industry